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The fint join? Tropical Raiftfdl M a w i n g  ,xifission (IXMM) by the US National Aeronauhcs 

m d  Space AdminisWiar~ (NASA) and the Japan Aerospace Explomtiorr Agency (JAXA) 

launched on Novesnl9%p 22, 1997 provides unique long-tern pmipitatiurn measqRmenis over &e 

global bopics. This sttad3 develop a powerful clock-face type gmphic display m & d  b e  cIe-arly 

and accurately show the gg%o.M patterns of the lnerzlinfail d im& phase md mplirude at the m e  

time, using the 8-year TRMM minfd'all datasets. ' f i e  late evening - early morning climd phase 

osw seam and mid-late aNemman d i m d  ph;nse over land are gmphicdiy displayed consistent 

with the global continents This papa is dser the Enpsi to show the g?abdly spatid patlens of& 

minor diurnal phase m d  intensity of rainfa81 diurnal cycles. The impact of horizonQlly spatial 

scales on rainfall diurnal cycle is discus&. Results show that m y  s+iected spatid s l l e  has no 

impact on the major di-ma1 peak of rainfail, but a signaiifi-icmt impact on h e  minor d i m d  peak. 

The aPi\*m&ages and disadvarrlaga of using a harmonic mdysis method in studying the rainfail 

d i m d  cycle ant discussed in derz-il. This method c;un exhibit global spatial patterns of the major 

d i m d  peak. while suppressing ?he influence of &n noise an ciiaamd cycles. Nowever> it reveals 

a weaker diumd intensity and shifted phases. The prossiMle false dimibudon of the minor 

diurnal peak caused by hahis m e l h d  i s  physicaiiy and graphically explained. 
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Abstract 

'('his investigation seeks a better understanding of the assorted mechanisms controlling thc 

global distribution of precipitation diurnal variability based on the use of 'fropical Rainfall 

Measuring Mission (TRMM) microwave radiometer and radar data. The horizontal distributions 

of precipitation's diurnal cycle are derived from eight years of TRMM Microwave Imager (TMI) 

and Precipitation Radar (PR) measurements involving three I'RMM standard rain rate retrie\:al 

algorithms -- the resultant distributions analyzed at various spatiotemporal scales. The results 

reveal the prominent and expected late-evening to early-morning (LE-EM) precipitation maxima 

over oceans and thc counterpart prominent and expected mid- to late-afternoon (MIA)  maxima 

over continents. Moreover, and no1 generally recognized. the results reveal a widespread 

distribution of secondary maxima occurring over both oceans and continents -- maxima which 

generally mirror their counterpart regime's behavior. That is, many ocean regions exhibit clear- 

cut secondary MLA precipitation maxima while many continental regions exhibit just as evident 

secondary LE-EM maxima. I'his investigation is the first comprehensive study of these globally 

prevalent secondary maxima and their widespread nature. a type of study only made possible 

when the analysis procedure is applied to a high-quality global-scale precipitation datasct. 

The characteristics of the secondary maxilna are mapped and described on global grids using 

an innovative clock-face format. while a current study to be published at a later date provides 

physically-based explanations of the seasonal-regional distributions of the secondary maxima. In 

addition to an "explicit" rnaxirna identification schen~e, a -'t70urier decomposition" maxima 

identification scheme is ~lsed to examine the amplitude and phase properties of the primary and 

secondary maxima -- as well as tertiary and quaternary maxima. ilccordingly. the advantages. 

ambiguities. and pitfalls resulting from use of Fourier harmonic analysis are explained. 



1. Introduction 

Studies of atmospheric diurnal processes which are influenced by the regulated daily 

cycle of incoming solar radiation at the top-of-atmosphere ('SOA) have been taking place for 

over one hundred years. 'fhc seminal study of Hann (1901) was the first to address 

precipitation's diurnal cycle. Observational and modeling analyses have denlonstrated that 

diurnal processes are evident in many atmospheric quantities. 'These include precipitation ( e . ~  

[long et al. 2005 and Yang and Smith 2006). surface temperature (e.g.. Smith 1986). surface 

winds (e.g.. Deser and Smith 1998). surface pressure (e.g.. Petcnko and Argentini 2002), vertical 

motion (e.g., Krishnamurti and Kishtawal 2000). cloudiness (e.g., Wylie and Woolf 2002), and 

surface (e.g.. Smith et al. 1986) and TOA (e.g., Smith and Rutan 2003) radiation fluxes -- as 

foremost variables. Notably, lengthy time series deri\.ed from satellite measurelncnts of various 

atmospheric variables have motivated new types of research concerning diurnal variability. 

'This has been particularly true for precipitation since the advent of Tropical Rainfall 

Measuring Mission (TKMM) and its associated 'TRMM Microwave Imager (TMI) radiometer 

and Precipitation Radar (PR) rain rate retrievals dating back to November 1997. Many 

mechanisms have been proposed to explain precipitation diurnal behavior. 'She .'static radiation- 

convection" (SRC) mechanism (e.g.. Raudall ct al. 1991): '.dynamic radiation-convection" 

(DRC) mechanism (c.g., Gray and Jacobson 1977), '-nighttime radiative cooling driven elevated 

relative humidity" (NRC-ERH) mcchanisni (c,g.. Tao et al. 1996: Sui et al. 1997. 1998). or the 

slowly cvolving. diurnally-vaiyiug "large scale vertical motion" (l..S-VM) mechanism (e.g., 

McBride and Gray 1080) represent various possible explanations for the well-established "late 

cvening-early morning" (1.E-EM) oceanic surface precipitation maximum. while the diurnally- 

regulated surface solar radiative heating (SRH) mechanism, which can manifest itself in either 



the form of a "static destabilization" (SD) mechanism or a "differential heating" (DII) 

mechanism, are thc tbrcmost explanations for the often-observed "mid- to late-afternoon" 

(MLA) continental surface precipitation nlaximum (e.g., Ramage 1971 and Piellce 2002). A 

number of studies using regional observations (e.g.. Schwartz and Bosart 1979; Olti and Musiake 

1994: Anderson el a1 1996: Sui et a1 1998; Chcn et al. 1999: and Dai 2001) have reported a 

secondary LE-EM peak in the continental precipitation diurnal cycle. The main possible 

explanations for this mode. which have been reviewed by Yang and Smith (2006), consist of the 

"mobile terrain-forced precipitating system" (h4TI'PS) mechanism and a continentally-based 

NRC-ERII mechanism. There is also a counterpart M I A  secondary- peak in thc oceanic 

precipitation diurnal cycle (e.g.. McGarry and Reed 1978: Reed and Jaffc 1981; Augustine 1984: 

1-u et al. 1990: Scrra and McPlraden 20041, for which the only plausible explanation that can be 

put forward is an ocean surface heating (OSlI) mechanism. which can irnolvc the near surface 

water layer (for occans. seas, and inland lakes) andlor the moist boundary layer over the water. 

Itowever, there is yet to be and investigation of the secondary diurnal mode of 

precipitation as a global phenomenon. Yang and Smith (2006) provide a detailed review and 

analysis of the variety of mechanisms controlling the diurnal cycle of precipitation. Based on the 

use of TRMM precipitation data. their analysis demonstrated that precipitation diurnal variability 

is a global phe~iomenoil with embedded diurnal forcing factors -- far more complex than can be 

explained with a few general causes (i.e.. the approach follo\vcd by nearly all past literature 

concerning this topic). The primary and doniiuant 1,E-1:M oceanic precipitation maxinium is 

often accompanied by a secondary MI,/\ maximurn. while the primary and doniinant MLA 

continental precipitation n~axinium is often accompanied or even replaced by a secondary LE- 

134 maximuni. 



As Yang and Smith (2006) emphasize, there are a host of mechanisms at work that 

produce the precipitation diurnal process. not one of which solely explains the entire process. 

Instead. a mixture of mechanisms whose individual components control regional and smaller 

scale diurnal modes work together to produce the averaged global process. Notably. most 

modeling studies investigating diurnal variability, particularly studies based on the atmospheric 

general circulation model (GCM). have focused on stand-alone nlonolithic mechanisms (e.g.. 

llandall et al. 1991. Dai and 'T'renberth 2004). The recent study of Dai (2006). reviewing results 

from 18 coupled atmosphere-ocean GCM (AOGCM) models, indicates large discrepancies 

involving diurnal variability of precipitation amongst the different models. Therefore, siven 

these findings and our experience with analyzing TIlbfM data, it appears that modelers should 

improve the "diurnal processes" capabilities of their models -- including precipitation -- to 

ensure that they reliably simulate atn~ospheric circulations that themselves are diurnally 

modulated. 

Furthermore. more detailed observational analyses of the spatioleniporal cllaracteristics 

of diurnal cycle variations are needed to reveal their unique properties so that the mechanisms of 

the diurnal cycle can he better phq~sically explained. Modelers would then have a better 

quantitative basis from which to refine model processes that control the diurnal variability of 

precipitation. Yang and Smith (this issue) describe ihe seasonal climatology of the diurnal cycle 

at global scales. its seasonal variability. and the contrasting behaviors of convective and 

stratiform components -- demonstrating that the secondary diurnal mode is largely modulated by 

the diurnal cycle of stratiform precipitation. In addition. Yang et al. (2006) found consistent 

appearance of global scale secondary precipitation maxima from eight years of TRMM data. 



As a follo.*v-up, this study demonstrates the widespread consistency in the occurrence of a 

secondary diurnal mode in precipitation globally. and at seasonal and regional scales. 'So obtain 

the detailed view: an innovative clock-face graphic display scheme is used to aid the analpis. 

Eight-year TRMM precipitation datasets derived Srom three le\!cl 2 TRMM standard rain rate 

algorithms are used to conduct the analysis. A Fourier harmonic analysis scheme is also applied 

to highlight the dominant diurnal modes of precipitation variability while suppressing the 

unimportant diurnal harnlonics. The advantages. ambiguities, and pitfalls related to usc of 

harmonic analysis are also discussed to draw attention to what can and cannot be achieved by 

using Fourier deco~iiposition analysis in studying precipitation's diurnal cycle. 

2. Methodology and Dataset 

.4n "explicit" precipitation rnaxirna selection scheme is first used to identify the priniar). 

atid secondary diurnal ~nodcs at various space-time scales. .4 .Touricr decomposition" selection 

scheme is then applied as a cross-checking method and as a means to filter out ambiguous time 

series noise. (;ridded properties of the diurnal cycle are illustrated using the clock-Face display 

schemc. 'I'he difkrent colors of the clock-hands denote the different diurnal modes, uhile the 

length and position of the clock-hands denote amplitude and phase characteristics of the separate 

diurnal modes. In addition. clock-face-colors are used to express the canonical phase interval of' 

thc primary diurnal mode. 

The existence of a secondary peak in a diurnal sequence of surface precipitation rate is 

found using two different precipitation maxima selectioli schemes. The first is referred to as thc 

.'explicit" selection scheme based on logic-based detection of local relative precipitation rate 

maxima in a given diurnal time series. This scheme consistently identilies the appearance of 

either primary or secondary modes. as long as each of the separate amplitudes exceed a 



minimum amplitude-emergence threshold and as long as there is sufficient separation in the 

positions of t u o  detected peaks according to a seco~id phase-angle separation threshold. 

Application of tlie "explicit" scheme may result in identification of both primary and secondary 

modes, olily a primary mode. or no modes at all. Tertiary and quaternary modes are also 

identified with thc "explicit" scheme. 

The second scheme is referred to as the "F70urier decomposition" selection scheme. This 

scheme by definition identifies amplitudes and phases of all wave numbers. f-iowever. in the 

analysis procedure me apply. on]) the primar? through quaternary modes are examined. It is 

noted that assignment of phases for the secondary through quaternary modes requires an 

adjustment procedure to the raw phase information for wave nuinbers 1 - 3 (i.e., Fourier 

harmonics 2 - 4). t:or example. in assigning the phase of a secondary mode, and defining the raw 

phase a~lgles of the 1" and ?"* Fourier harmollics as @,and existence of a peak ibr the 

secondary diurnal mode is only established when each of the following tun  conditions is 

satisfied: 

192 -$,I '45" (1) 

n + @ , - $ , l < 4 j 0  I - ( 2 )  

Thus, the peak of the z " ~  harmonic is separated from the peak of the 1 " harmonic by at least six 

hours. Otlierxise, the primary and secondary modes would merge into a different primary mode 

with a different phase. I,ikewise, the phase positions of the tertiary and quaternary modes must 

he established by assuring appropriate phase-angle separations. As indicated earlier. the clock- 

face graphic display scheme can then be used to illustrate thc various parameters associated with 

the diurnal analysis on a regular grid. 



Eight-year (1998-2005) precipitation datasets derived from the three mail1 level-2 TRbIM 

standard precipitation algorithms are used for the study. 'These are the TMI-only (i.e, alg 2a12): 

PR-only (i.e., alg 2a25). and combined PK-TMI (i.e., alg 2b31) rain rate retrieval algorithms. 

The level-2 instantaneous rain rates at 11ative orbit-swath pixel locations are first hin~led into 

eight (8) 3-hourly mean solar time (MS'I') bins -- then grouped at different spatial and temporal 

resolutions. A hierarchy of 5"xj0, 10"x10". 20"x30° and 20°x60" latitude-longitude spatial grid 

resolutions are then used in processing the data at seasonal and 8-year mean temporal scales. 

3. Diurnal Properties of Precipitation at Global Scale 

I'hc distribution of the 8-year mean TRMM-based precipitation diurnal cycle over oceans 

and continents depicts a distinct climate feature on the global scale. Figure 1 shows the climate 

characteristics of diurnal variability from TMI-only. I'R-only. and combined PR-TMI rain rate 

retrievals. 'I'his diagram clearly shows that the precipitation diurnal cycles from the three 

'I'RMM rain rate products are consistent in terms of amplitude and phase over oceans, and 

consistent in phase over continents although with somewhat larger TMl precipitation an~plitudcs. 

Oceanic precipitation has a dominant late evcning maximum in the 3-6 MST tirneframe while 

continental precipitation has a prevailing late afternoon peak in the 15- 18 MST timeframe. 

Seasonal variability of the diurnal cycle is another important feature described in detail 

by Yang and Smith (2007). Figure 2 illustrates the climatology of seasonal variations of the 

diurnal cycle over oceans and continents using 8-year 2a25 PR rain rates. The primary 

maximum at 3-6 MST of oceanic precipitation is prominent in Spring, Autumn and Winter. but 

relatively weak in Summer. At the global scale, the secondary maximum over oceans is not 

obvious for any season. The primary late afternoon peak at 15-18 MST of continental 



. , precipitation is the most dominant feature. Ilie secondary late e\rening maximum is most 

apparent in Stimmer and Winter. while weak but detectable in Spring and Autumn. 

The diurnal variations of convective and stratiform precipitation from 2a25 are also 

illustrated in Figure 2. Over ocrans. convective precipitation exhibits the same diurnal 

properties as total precipitation. while stratiform precipitation exhibits a secondary peak in early 

afternoon in Spring and Winter in addition to its dominant late evening maximum. Over 

continents, the dominant late aliernoon aficrnoon peck in convective precipitation mimics the 

diurnal behavior of total precipitation, while stratiform precipitation exhibits a late evening 

niaxi~nurn at 3-6 MS'I' and a late afternoon maximum at 15-18 MST. She TMI-ot~ly and 

combined PI<-.TMI rain rate products (figures omitted) indicate mostly similar characteristics 

insofar as diurnal variability. 

4. Persistent Nature of Secondary Diurnal Mode 

4.1 Charrrcteristics of Secot~rlrrg~ Mode 

Iiorizontal distrib~~tions of the precipiration diurnal cycle based on the %-year I'RMM rain 

rate products analyzed on a 5"xjo grid are shown in Figure 3 illustrated in the format ofclock- 

face grids. A blue (grccii) color-hce of a given clock denotes a pre-noon half-day (post-noon 

half-day) phase interval of the dominant maximuln for each grid location, where the prc-noon 

half-day phase interval is defined from 0-12 MST and the post-noon half-day phase interval from 

12-24 MST. The transition of clock-face color i s  evident along almost all coastlines. Shis draws 

attention to the dominance of the pre-noon precipitation inavimuili over oceans (bluci and the 

post-noon precipitation maximum over continents (green). This hehmior u7as reported by Yang 

and Smith (2006) for a onc-year dataset (1098). Here it is graphically and robustly illustrated 

using 8 years of data at high spatial resolution at specific grid regions. It is seen that at the S0x5" 



spatial scale. a few oceanic grid locations exhibit dominant post-noon maxima. \chile a few 

continental grid locations indicate dominant pre-noon maxima. The reasons for these exceptions 

deserve future examination. In addition, close examination of the clock-faces reveals that 

secondary maxima (denoted by white inner faces) are widespread throughout the tropics and sub- 

tropics observed by the 'I'RMM satellite, in which secondary post-noon peaks are found over 

oceans and secondary pre-noon peaks found over continents. These characteristics are highly 

consistent between the TMI. PR. and combined PR-TMI rain rate products. 

Similar analyses conducted at 2Oox3O0 spatial resolution scale are illustrated in Figure 4. 

At this grid scale: there is no ambiguity as to the separation of the primary pre-noon and post- 

noon modes over oceans and continents. respectively (with the proviso that the mixed land-watcr 

Mariti~ne continent exhibits purely oceanic diurnal precipitation properties in regards to the 

primary niode). Riote that at this grid scale. .there is perfect agreement amongst the three 

algorithms insofar as the arrangement of the blue and green clock-faces. Also. as in Figure 3: 

there is \videspread but not complete distribution of the secondary mode (nii~rked by uhite inner 

clock-faces). noting that for this diurnal property, whereas there is general agreement amongst 

the three algorithms. there is not perfect agreement. These two aspects of the secondary mode. 

along with other more obscure characteristics found by close examination of the amplitudes and 

phases of the secondary mode ( i t . ,  denoted by the appewances, lengths. and positions of green 

clock-hands) indicate that it is a more complex process than that of the primary mode. It is also 

apparcnt that the secondary inode o\:er continents is morc prevalent. Quantitatively, the results 

show that there is 72%. 61?/i. and 77% consistency in the occurrence of secondary peaks 

identified between the three algorithm pairings 2a12 - 2A25.2~112 - 2b31, and 2a25 - 2b3 1 .  



f2igure 5 presents another set of siniilar analyses. but now based only on the PR algorithm 

and comparing the 2Oox30" result shown in Fig. 4 with results at lO0xlOo and 2Oox60" spatial 

resolutions. Although there is general agreement between the members of this set of results, 

there are interesting and pertinent differences pertaining to spatial resolution. First, the 

secondary peak is not evident over the central Pacific Ocean at the 2O0x3O0 grid scale, but 

appears over this region at the IOoxIOo and jox5" grid scales. This same effect is found over the 

Indian ocean and the northwest Pacitic ocean subtropical regions. In addition, there are 

differences associated with the different horimntal scales on the occurrence of secondary 

maxima in the central-west Indiaii ocean, the central-east Pacific ocean. and north Africa. 

In summarizing the effects of spatial resolution on the areal cover of the secondary mode 

(see l'able I), it is found that the percentage of low resolution grid positions (upper panel in Fig. 

5) indicating the presence of a secondary peak is 78% (i.e., 14 of 18 grids), whereas for the 

medium resolution grid array (middle panel) the percentage falls to 69% (25 of 36): and then 

down to 65% (188 of 288) for the high resolution grid array. Based on the middle panel i'R 

result of Fig.3 at the highest spatial resolution used in the study (i.e., 5"xjo), the percentage rises 

to 68% (783 of 1152). This emphasizes the sensitivity to grid resolution in evaluating the areal 

coverage of the secondary peak in the framework of 8-year means. with the end result being a 

diMtrencc of some 13% between the smallest and largest areal cover values. 

Notably, when these areal cover sensitivities to spatial resol~~tion are decomposed into 

differences for oceanic and continental regimes, the percentage differences become larger, which 

as Table 1 indicates are 30% for ocean and 16% for continents. 'The much larger difference for 

ocean is primarily due to the mixing of  continental and oceanic secondav peaks at the lowest 

resolution. Therefore. whereas it is evident that the secondary peak in precipitation's diurnal 



cycle is a widespread pheiiomenon over the global tropics and sub-tropics, caution must be 

exercised when evaluating the quantitative cover Fdctors for oceans and continents because of the 

sensitivities involved. [Similar analyses using the TMI and combined PR-TMI precipitation 

datasets lead to almost identical percentage differences. emphasizing rob~~st~iess  ofthe results. 1 

Based on analyzing the 20th-century climate simulations by the newest generation of 18 

coupled climate system models. I>ai (2006) indicates that most cliinate models can reproduce 

general precipitation patterns and their basic annual variability, although some of these models 

coiitinue to generate unrealistic double Inter-tropical Conversioii Zone (I'I'CL) patterns over the 

tropical castern Pacific ocean -- a persisting problem ill climate modeling (Mechoso et al. 1995). 

In addition. 1)ai (2006) found that most models produce too much convective precipitation and 

too little s t r t i for~n precipitation, resulting from unrealistically stroiig coupling of tropical 

convection to local sea surface temperiltures. Most relevant to the concerns in this study: 

analyses of the precipitation diurnal cycle suggests that mcrst models start to precipitate too early 

and too freqilently at reduced intcnsit), sliowing a single late morning - early afternoor? peak 

over continents and a single 1.E-EM peak over oceans. Many of these latures are different from 

the 'I'KMM precipitation diurnal analysis presented in this study, as ~vcll as in the Ya~ig and 

Smith (2006.2007) and Yang et al. (2006) studies. 

It should come as no surprise that climate models are unable to realistically simulate the 

diurnal variations of precipitation. Their spatial resolutions are too low vis-a-vis precipitation 

physics to properly simulate the narrowly confined mass and water vapor convergence processes 

leading to convection or to meaningfully resolve the vertical overturiiings of cloud systems that 

actually produce con\:ective aiid stratiform precipitation fallout. Moreover. they do not have any 

type of meaningful microphysical parameterizations insofar as the initiation: growth. loss. phase 



change, and vertical motion of either non-precipitating or precipitating hydrometeors. Thus. it is 

appropriate that the type of observationally-based study such as presented here, concerning 

highly detailed properties of precipitation processes. should be used to guide and calibrate future 

irnprovernents in the embedded mjater cycle formulations of AOGCMs. 

4.2 Convective and Stratiform Partitioning of Secondary Mode 

We have demonstrated that the horizontal distribution of the primary diurnal rnode of 

precipitation over both oceans and continents is little affected by spatial resolution. Ifowever. 

the spatial averaging scale imparts a significant impact on the horizontal distribution of the 

secondary mode. Yang and Smith (2007) show that in an 8-year averaged global framework, the 

secondary mode is significant ovcr continents hut weak over oceans. They also find that when 

considering regional-seasonal scales tlie secondary mode beconies significant ovcr oceans and 

even more so over continents. and the different modes are largely rnodulatcd by stratiform 

precipitation diurnal variability. In order to explain the possible cause of this secondary mode 

behavior. we analyze the diurnal cycles of precipitation's convective and stratiform components. 

Figure 6 illustrates the horizontal distributions of the primary and secondary diurnal 

cycles of precipitation from mean 8-year I'R retrievals at the 20"r3Oo grid scale. 13y inspection it 

is evident that both convective and total precipitation exhibit the same oceanic - continental 

contrast in the phase of the primary diurnal peak. Also, the secondary mode of the convective 

component nearly mimics the secondary mode of total precipitation. Detailed inspection reveals 

that the phases of the dominant mode of both corlvectivc and total precipitation are 

approximately equivalent, however. there is a shift in phases between the secondary modes of 

convective and total precipitation. This shift is due to the contributio~l of the stratiform 

precipitation diurnal cycle. As seen in tlie lower panel of Fig. 6, an important feature is that the 



dominant peak of stratiform precipitation's diurnal cycle over central Africa. Asia, Australia. and 

central South America occurs during the LE-EM period: while its secondary peak occurs during 

the M1.A period at the same time as that of convective and total precipitation. 

Therefore, over continents a primary L.f:-l:M diunlal peak of stratiforrn precipitation is in 

phase with the secondary 1.E-fEM peak of total precipitation, while convective and total 

precipitation exhibit similar primary M I A  diurnal peaks. These results indicate that afternoon 

convection forced by surface solar radiative heating reaching its maximum diurnal intensity is 

responsible ibr the dominant afternoon peak of the continental precipitation diurnal cycle. i.e.. 

the SRH mechanism. The development time of stratiform precipitation suggests that any one of 

a number of possible mechanisms such as tlic MTFPS, continental LRC-IXH, or perhaps even a 

SRC. DRC. or I.S-VM mcchanisrn operating within a continental environment. might explain the 

1,E-EM maximum in stratiform precipitation, which contributes to the secondary l.E-EM peak of 

total precipitation. 111 addition. the DRC mechanisn~ operating within a continental environment 

might elevate nighttime precipitation while suppressing daytime precipitation -- u-hich is how the 

DRC mechanism operates. These processes of convective and stratiform systems draw attention 

to how multiplc mechanisms might compete with one another for dominance, resulting in 

counterpoised 1.E-FIM and ML.A modes in the continental precipitation diurnal cycle. 

Over low latitude oceans. stratiform precipitation inevitably accompanies convective 

precipitation. especially for strong convective systems (Houze 1997). In fact. the contribution of 

stratiform precipitation to total accumulation is about the same as that of convective precipitation 

(Yang and Smith 2007). Fig. 6 act~lally shows that the dominant 1,I;J-EM peaks of convective 

and stratiform precipitation are in excellent agreement, suggesting that whatever mechanism is 

producing the 1.E-13% mode. e.g.. one or nlore of the SRC. I X C ,  NRC-IRH, or LS-VM 



mechanisms. is operating in synchronization with both co~ivective and stratiform components. In 

addition. the secondary MLA mode, i.e., due to the OSEI mechanism, is effective for both 

convective and stratiform precipitation diurnal variability. although close inspection oS Fig. 6 

suggests that the modulation of the ocean's secondary mode amplitude stenis niostly from 

fluctuations in tlie amplitude of the stratiform component. Similar analyses conducted at higher 

spatial resolutions lead to similar findings for the primary peak of the diurnal cycle, while the 

secondary peak exhibits somewhat more cornplex behavior (figure omitted). ?'he secondary 

mode intermittently spreads out over the entire tropics and subtropics at the 5"x5" grid scale. 

Over oceans, this behavior suggests that the secondary h41.A mode is more important at smaller 

llorizontal scales. 

5. Harmonic Analysis of Diurnal Cycle 

5.1 Diurnal Characteristics Revraled from Harmonic Analysis 

A Fourier harmonic decomposition scheme is applied to examine the diurnal variability 

of precipitation it1 order to elucidate the forenlost amplitude and phase features while tilterilig 

high frequency noise. Because this approach suppresses spurious variations in a diurnal time 

series that might be detected as cxtrenia in the explicit method. it is worthwhile evaluating its 

Lvorth. Figure 7 compares the horizontal distribution of the precipitation diurnal cycle based on 

the explicit scheme applied to jox5" gridded PR-only retrievals over the 8-year (1998-2005) time 

period. to a counterpart result bascd on application of the Fourier deconiposition scheme. The 

clock-face plots provide all essential details concerning amplitudes and phases, for not only the 

primary and secondary modes. but also for tertiary- and quaternary modes. Colors and clock- 

hand pointing denote phase information uhile clock-hand length denotes amplitude information. 



A strong contrast betureen primary harmonic diutrnal phases over oceans and continents is the 

eye-catching feature in the upper panel of Fig. 7 (explicit scheme) as it is in the middle panel 

(170urier decomposition scheme). The clear-cut contrast between the oceanic I..I.:-EM phase and 

continental-like MLA phase along coastlines is actually sharper in the middle panel than in the 

upper panel. In addition. there are fewer spurious regions in the middle panel uhere the prinlary 

precipitation peaks are misidentified. A four-color clock-face scheme showing a Inore detailed 

representation of the phase interval of the primary mode is shown in the lower panel. Over 

oceans. frequent occurrence of late evening interval (0-6 hlST) peaks is the dominant diurnal 

feature: with additional occurrences of morning interval (6-12 MSI') peaks largely over coastal 

regions. Over continents. thc occurrence of early evening interval (18-24 MST) peaks is the 

dominant feature over Africa and Australia. while the aliernoon interval (1 2-1 8 MS) peaks are 

dominant cover South .America. North America and Asia. 'These more detailed diurnal features 

suggest that either different mechanisms are at work or singular mechanisms dominate but are 

dispersive in iheir timing of the maxima within different environments. Similar analyses at 

lower spatial resolution confirms that the underlying spatial distribution patterns of primary and 

secondary modes. as seen in Fig. 7, are not greatly affected by the use of a high resolution scale. 

The higher order harmonic modes conform to semi-diurnal. tri-diurnal. and quartic- 

diurnal variations. and require an interpretation of where to position the actual peaks in terms of 

their phase angles in time. Figure 8 presents a comparison of the first three principal diurnal 

modes based on use of the explicit scheme in the upper panel. and the first two principal Fourier 

harmonics in the lower panel cast onto 20"x30° grids. The clock-Pdce color exhibits a pre-noon 

half-day phase interval (blue) and post-noon half-day phase interval (green) of the primary 

diurnal mode. The secondary modes are shown by use of white inner clock-faces. It is obvious 



that the horizontal distribution of the primary diurnal mode based on use of the explicit scheme is 

consistent the horizontal distribution of the same mode based on use of the Fourier 

decomposition scheme, although close inspection of the two diagrams shows that small phase 

differences occur. More relevant are the greater and more frequent differences concerning both 

amplitudes and phases of the secondary mode between the two maxima identification schemes. 

The secondary mode will appear almost everywhere with Fourier analysis. simply 

because even if there is no secondary peak in actuality. almost invariably some power will leak 

into wave number 2. Even though it does not satisfy the definition of the secondary mode over 

the northern part of South America and central South Africa, the secondary mode from the 

Fourier decomposition scheme is still apparent over these areas in comparison with the explicit 

scheme. For those grid positions where only a primary mode is found from the explicit scheme 

(such as over the ccntral Pacific Ocean and the \vest lndian Ocean), a secondary mode is often 

identified from the Fourier analysis. The sources of the ambiguities associated with Fourier 

harmonic analysis of precipitation's diurnal cycle arc discussed in the next section. 

5.2 Ambiguities Associated with Harmonic Anczlysis 

The results prcsentcd in the previous section demonstrate that the Fourier decompositio~l 

approach is robust for the primary diurnal mode of precipitation, especially the phase of the 

dominant diurnal peak -- as noted in. for example, the Collicr and Bowman (2004) and Yang and 

Smith (2006) studies. However: the nature of Fourier harmonic analysis can lead to 

misinterpretation of both amplitudes and phascs of different modes as they mix together. even 

the mixing of perfect sinusoidal modes. 'I-his can be especially problematic in seeking to identify 

and describe a secondary diurnal mode. Thus. ambiguities are inevitable when using Fourier 

analysis in analyzing precipitation's diurnal variability. Ihesc ambiguities arise from a number 



of sources. Of necessity: diurnal precipitation modes are: (a) generally truncated semi-diurnal 

modes. (b) represented as repeating cycles over the 24-hour diurnal period for Wave number 1 

and beyond. and (c) not purely si~lusoidal and thus dispersive in their power spectrum over a 

spread of Srequencies when considering realistic diurnal modes in actual observations. 

Figure 9 demonstrates a case of 1:ourier decomposition Tor 2 purely sinusoidal. but 

truncated, diurnal modes urith equal amplitude but shifted phase. The 2 peaks occur in early 

morning and late afternoon. The original components and combined time series for the double- 

peak cycle are illustrated in the lefi 3 panels. The right 4 panels present their successive 

reconstructed diurnal cycles using the mean and first 3 principal Fourier harmonies. Note that 

the primary mode is the 2"* harmonic (wave number 2) which produces 2 diurnal peaks. Along 

with the mean value (wave number 0). the primary mode reproduces the basic diurnal properties 

but with a phase shift. Inclusion of the secondary mode (i.e.. 1'' harmonic. wave number 1) 

produces a more realistic time series in uhich both amplitudes and phases are near thcir original 

values. However: it is evident that at least -3 harmonics arc needed to reconstruct a sound 

represen~ation of the original combined time series -- based on the mixing of 2 perfect. but 

truncated, sinusoids. 

A similar analysis is conducted for another case in which the amplitude of the late 

afternoon peak is much smaller than that of the early morning pcak (Figure 10). The prirnary 

mode (1" harmonic. wave number 1) depicts nicely the phase of the principal diurnal peak. 

however. its amplitude is too srnall conlpared with the original value. Furthcrmorc. the single 

primary harmonic cannot reproduce thc secondary late afternoon peak. It is cvident that the 

reconstructed diurnal cycle produced by the inclusion of the 2""armonic (wave number 2) 

produces a realistic primary early marlling peak in both amplitude and phase, as well as a 



realistic secondary late afternoon peak in amplitude but with a phase shift. I'hus, a 3" harmonic 

is needed to bring about a reconstructed diurnal cycle that is si~nilar to the original. 

Figure 11 presents a final case, but now for a realistic observational situation, with a 

don~inant peak at noon and a weaker secondary peak in late afternoon. Additional higher 

frequency fluctuations are also evident -- which can be considered either real data properties. or 

more often noise due to retrieval error and/or under-sampling. Clearly, thc harmonic approach 

call be used to eliminate the high frequency waves. In reconstruction. the primary mode (1" 

harmonic. wave number 1)  clearly reproduces the phase of the dominant peak: although the weak 

secondary peak is missed. Due to the srnall phase separation between the dominant primary peak 

and weak secondary peak. the 3'"armonic (wave number 3) represents the secondary mode. 

llsing only the first two principal harmonics. the reconstructed diurnal cycle exhibits the basic 

features of the originai cycle. however. with a discernible phase shift in the secondary mode. 

I'here are two lnain points to this analysis. First, when using the Fourier decomposition 

scheme. the dominant harmonic (along with the mean 1-aluc). are able to reproduce the mail1 

t'catures of ihe primary diilr~nlal peak, particularly its phase. Second, the mean and first two 

principal harmonics generally can reproduce some. but not all. of the key features of the 

secondary peak. F:or some cases. the dominant harmonic cannot adequately reproduce the 

amplitude andlor phase features of the primary mode -- but for the TRMM data we liave 

analyzed. these occurrences only arise -6% of the time. Thus. sincc the diurnal cycle of 

precipitation often has a dominant primary peak and a weaker secondary peak. the pri~icipal 

Fourier harmonic is used to represent the main features of the strong primary mode. while the 

second harmonic is used to represent thc main features of the weak secondary mode. In doing 

so: it must be recognized that a phase shift is often associated with thc representation of the 



secondary mode, as well as possible aniplitudc errors for both modes. Note, the second 

harnionic is often needed to contribute to the amplitude behavior of the primary mode. kinally 

note. the harmonic approach can bring about a false secondary mode when only a single primary 

mode is present, in colisidering the case when a second harmonic is used to compensate for 

aiiiplitude ~nisreprcscntation in the primary mode. 

Therefore, caution is always required in identifying secondary modes when using the 

1:ourier deconiposition scheme. Background knowledge of regional precipitation properties is 

always helpful in mitigating against ambiguities c a ~ ~ s e d  by applying harmonic analysis. In tcrins 

of our secondary mode analyscs \vith TRMM precipitation data. the incidences of mis- 

intcrprctation associated with the Fourier decomposition scheme are relatively frequent. 

particularly for the higher spatial resolutions. contaminating the results some 45% of the time. 

6. Discussion and Conclusions 

This study has examined the diurnal variability of precipitation at various spatial and 

temporal scales based on 8-year TRMM SMI. PR: and combined PR-TMI precipitation datasets. 

We find that these three distinct rain rate products produce consistent behavior insofir as the 

diurnal cycle properties of precipitation. '1.11~ 8-year averaged diurnal cycles of oceanic and 

continental precipitation consistently exhibit priniarq ~iiaxima during the 3-6 MST and 15-18 

MS'I' periods. respectively. Moreover. counterpart secondary maxima arc strongly evident 

throughout the global tropics and sub-tropics, with seasonal variation being a very prominent 

feature of the secondary mode. These outstanding features of tlic diurnal behavior of oceanic 

and continental precipitation on a global scale are presented by use of a specially-designed 

graphic made up of gridded clock-faces with clock-hands, and coloring techniques to 

simultaneously display the various key parameters of harmonically complex precipitation 



variation at the diurnal time scale. The secondary precipitation maxima generally consist of 

afternoon peaks over oceans and morning peaks over continents. Notably. this is the first study 

in which the widespread secondary mode has been identified and given special attention. 

I t  is important to recognize that based on our past and current 1'RMM data analyses, we 

find that the secondary are largely produced and modulated by stratiform precipitation 

(see Yang and Smith 2007). Although we have shown that the underlying properties itf the 

precipitation diurnal cycle are influenced by the spatial and temporal resolutions at which the 

data are analyzed, we find that there is a great deal of consistency in how oceanic and continental 

regions contrast with one another. regardless of the underlying resolutions. For example, the 

impact of spatial resolution is generally not significant concerning tile primary diurnal mode, 

although it can be significant in identify-ing the areal coverage of the secondary diurnal mode. 

Most importantly, the global distribution of the precipitation diurnal cycle exhibits considerable 

seasonal variations -- largely due to the occurrence of secondary diurnal modes. 

The Fourier decomposition scheme does a credible job in identifying the main amplitude 

and phase features of the primary- mode with the advanpage of eliminating spurious high 

frequency fluctuations in the original diurnal time series. We tind that this apprciach is at its best 

when representing the phase of the primary diurnal mode. Nonetheless. at times. secondary, 

tertiary. and even quaternary modes are needed in reproducing realistic amplitudes of the 

primary mode. Thus. the Fourier decomposition scheme can produce isolated ambiguities vis-a- 

vis the interpretation ofthc primary diurnal mode. depending on liow the scheme is applied. 

Furthermore. we have demonstrated how and why the Fourier decompitsition scheme 

creatse ambiguities in representing the ainplitude and phase properties of the secondary diurnal 

mode because of the up-frequency mixing of power from the first principal mode into the higher 



order modes. We have shown that secondary diurnal modes over some regions derived from the 

Fourier scheme applied to I'KMM data -- are simply not real. L'herefore. caution is in order 

when interpreting the amplitudes and phases of the secondary, tertiary; and quaternary modes. 

apart from any coherency at the global scale. when using Fourier analysis -- noting that 

ambiguities in representing the secondary mode are uilavoidablc. Konetheless. surface 

precipitation normally exhibits fairly distinct primary and secondary diurnal peaks such that the 

Fourier decomposition scheme is often applicable. I11 any case. background knowledge of the 

pertinent tneteorological variables controlling precipitation, 21s well as i~ndcrstanding how rhe 

precipitation variables behave in response to the relevant diurnal mechanisms at work; are 

alw~ays helpful in analyzing for secondary diurnal modes whcn using 1:ourier decomposition. 
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Figure 6 :  Same as in Fig. 4. except for only PR algorithm with separate panels illustrating 

results for total (upper). convective (middle), and stratiforin (lower) precipitation. 

Figure 7 :  Comparison of horizontal distributions of PR algorithm-based precipitation diurnal 

cycles involving two different maxima identitication schemes applied in 8-year averaging 

framework (1998-2005) o n  j0x5" grids -- using clock-face diagrams. Upper panel shows 
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Figure 8: Same as in 1:ig. 7. except for: (a) application on only two 20°x300 grids, (b) use of 

only two-color clock-face fonnat. (c) extraction of only first three principal modes for 

explicit scheme. (d) extraction of only first two principal harmonics for Fourier 
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Figure 9: Fourier decomposition of two purely sinusoidal, but truncated. equal-amplitude and 

phase-shifted diurnal modes combined into two-peak diurnal cycle. Three left-hand panels 

show two separate diurnal modes along with combined diurnal cycle. Four right-hand panels 
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Figure 10: Same as in I:ig. 9: except that two diurnal modes are unequal-amplitude. 

Figure 11: Same as in Fig. 9. except that two diurnal modes are realistic (non-sinusoidal and 

unequal-amplitude). 
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Figure 2: Mean diurnal cycles of seasonal precipitation ]?om PR algorithm retrievals for eight 
years (1998-2005) over oceans (left panels) and continents (right panels). I'otal. con~:ective. 
and stratiform precipitation classifications are deno~ed b )  '1.. C. and S. respectively. [Key to 
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Figure 3: IIorizontal distributions of diurnal precipitation cycles based on TRMM satellite data 
averaged over 8-year period (1998-2005) and analyzed on S0x5" spatial grids -- using clock- 
face diagrams. Upper. middle, and lower panels provide results for 7'hfI: PR. and combined 
PR-"rM1 algorithms, respectivcly. Worth. east. south, and west points of given clock-face 
refer to 00: 06: 12, and 18 MS'f phases, respectivel>-. Blue clock-face indicates that primary 
mode occurs some time during pre-noon half-day (0-12 MST) phase interval, while green 
clock-face indicates that primary mode occurs some time during post-noon half-day (12-24 
MST) phase interval. Black upper half-circle ot'each clock-face denotes nighttime period, 
while white lower half-circle denotes daytimc period. White inner clock-face highlights grid 
position where secondary diurnal maximum is clearly evident. Red clock-hand points to 
numeric phase of primarq. mode. green hand of secondary mode, and blue hand of tertiary 
mode -- over 0-24 hfST interval. Amplitude of individual mode is denoted by length of 
associated clock-hand. in which four embedded rings indicate magnitudes (on log scale) of 
0.15, 0.3, 1.5. asid 3 m m d a i l .  
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Figure 4: Same as in Fig. 3. except that results arc a~~alyzed on 20°x30' sparial grids such that 
rows represent 10-30"s. 10"S-1 OoN. and 1 0-3O0N latitude belts. 
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Figure 5: Same as in Fig. 3. except for only PR algorith~n with separate panels illustrating 
results on 20"x60° (upper). 20"x3Oo (middle). and 1Oox1O0 (lower) grids. 
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Figure 6 :  Same as in Fig. 3. except for only PR algorithm with separate pltncls illustrating 
results for total (upper). convective (middle). and stratiform (lower) precipitation. 
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Figure 7: Comparison of horizontal distributions of PR algorithm-based precipitation diurnal 
c)cles involving two different maxima identification schemes applied in 8-gear averaging 
framework (1998-2005) on 5"xj0 grids -- using clock-face diagrams. Upper panel shows 
dominant maxima based on "explicit" scheme. Middle and lower panels show first four 
dominant maxima based on "Fourier decomposition" scheme -- using two different clock- 
face color formats for indicating modal phase intervals (1'' of these formats is same as used 
for upper panel). Two-color clock-face format is used for upper and middle panels. in which 
blue clock-face denotes that primary mode occurs some time during pre-noon half-day (0-12 
MST) phase intefial, while green clock-face denotes that primary mode occurs some time 
during post-noon half-day (12-24 MST) phase interval. Four-color clock-face format is used 
for lower panel, in which blue. light blue, green, and light green faces denote that primarj 
inode occurs some time during late evening (0-6 MST), morning (6-12 MST). afternoon (12- 
18 MST), or early etening (18-24 MST) phase interval, respectively. Red clock-hand 
indicates numeric phase of primary harmonic, green hand of secondary harmonic, blue hand 
of tertiary harmonic. and black hand of quaternary harmonic -- over 0-24 MST interval. 
Amplitude of individual mode is denoted by length of associated clock-hand. in uhich four 
embedded rings indicate magnitudes (on log scale) oC 0.1 5.0.3, 1.5, and 3 mm day' 
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Figure 8: Same as in Fig. 7. except for: (a) application on only two 20"x30° grids. (b) use of 
only two-color clock-face fonnat, (c) extraction of only first three principal modes for 
explicit scheme, (d )  extraction of only first two principal harmonics for Fourier 
decomposition scheme, and (e) use of white inner clock-face to denote grid position where 
secondary diurnal maximum is clearly evident. 
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Figure 9: Fourier decomposition of two purely sinusoidal, but truncated, equal-amplitude anti 
phase-shifted diurnal modes combined into two-peak diurnal cycle. Three left-hand panels 
show two separate diurnal modes along u-ith combined diurnal cycle. Four right-hand panels 
show successive reconstructions of combined diurnal cycle using mean value (wave number 
0) and first three principal Fourier harmonics (wave numbers 1 - 3). 
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Figure 10: Same as in Fig. 9. except that t u o  d i~~rnal  rnodes arc unequal-amplitude 
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Figure 11: Same as in Fig. 9. except that two diurnal modes are realistic (non-sit~usoidal and 
unequal-amplitude). 




